415,526 research outputs found

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    A multi-agent growth model based on the von Neumann-Leontief framework

    Get PDF
    This paper presents a discrete-time growth model to describe the dynamics of a multi-agent economy, and the model consists of production process, exchange process, price and technology adjustment processes etc. Technologies of agents in each period are represented by a technology matrix pair, and some properties of Perron-Frobenius eigenvalues and eigenvectors of technology matrix pairs are discussed. An exchange model is also developed to serve as the exchange part of the growth model. And equilibrium paths of the growth model are proved to be balanced growth paths sharing a unique normalized price vector. Though this paper focuses mainly on the case of n agents and n goods, the growth model can also deal with the case of m agents and n goods. A numerical example with 6 agents and 4 goods is given, which describes the dynamics of a two-country economy and has endogenous price fluctuations and business cycles.von Neumann’s expanding economic model, input-output model, dynamic general equilibrium, disequilibrium, multi-country economic model
    • …
    corecore